Adipose-specific effect of rosiglitazone on vascular permeability and protein kinase C activation: novel mechanism for PPARgamma agonist's effects on edema and weight gain.

نویسندگان

  • Konstantinos B Sotiropoulos
  • Allen Clermont
  • Yutaka Yasuda
  • Christian Rask-Madsen
  • Motonobu Mastumoto
  • Junichi Takahashi
  • Kim Della Vecchia
  • Tatsuya Kondo
  • Lloyd P Aiello
  • George L King
چکیده

PPARgamma agonists, thiazolidinediones, cause fluid retention and edema due to unknown mechanisms. We characterized the effect of rosiglitazone (RSG), a thiazolidinedione, to induce vascular permeability, vascular endothelial growth factor (VEGF) expression, and protein kinase C (PKC) activation with edema and wt gain. In lean, fatty and diabetic Zucker rats, and endothelial insulin receptor knockout mice, RSG increased wt and vascular permeability, selectively in fat and retina, but not in heart or skeletal muscle. H2O content and wt of epididymal fat were increased by RSG and correlated to increases in capillary permeability in fat and body wt. RSG induced VEGF mRNA expression and PKC activation in fat and retina up to 2.5-fold. Ruboxistaurin, a PKCbeta isoform inhibitor, in the latter 2 wk of a 4-wk study, normalized vascular permeability in fat and decreased total wt gain, H2O content, and wt of fat vs. RSG alone but did not decrease VEGF expression, basal permeability, or food intake. Finally, RSG did not increase wt or vascular permeability in PKCbeta knockout vs. control mice. Thus, thiazolidinedione's effects on edema and wt are partially due to an adipose tissue-selective activation of PKC and vascular permeability that may be prevented by PKCbeta inhibition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Renal and Vascular Mechanisms of Thiazolidinedione-Induced Fluid Retention

Thiazolidinediones (TZDs) are peroxisome proliferator-activated receptor subtype gamma (PPARgamma) activators that are clinically used as an insulin sensitizer for glycemic control in patients with type 2 diabetes. Additionally, TZDs exhibit novel anti-inflammatory, antioxidant, and antiproliferative properties, indicating therapeutic potential for a wide variety of diseases associated with dia...

متن کامل

Rosiglitzone Suppresses Angiotensin II-Induced Production of KLF5 and Cell Proliferation in Rat Vascular Smooth Muscle Cells

Krüppel-like factor (KLF) 5, which initiates vascular smooth muscle cell (VSMC) proliferation, also participates in Angiotensin (Ang) II-induced vascular remodeling. The protective effect of rosiglitazone on vascular remodeling may be due to their impact on VSMC proliferation. However, the underlying mechanisms involved remain unclear. This study was designed to investigate whether the antiprol...

متن کامل

Effects of lipopolysaccharide-induced septic shock on rat isolated kidney, possible role of nitric oxide and protein kinase C pathways

Objective(s): Pathophysiology of sepsis-associated renal failure (one of the most common cause of death in intensive care units) had not been fully determined. The effect of nitric oxide and protein kinase C (PKC) pathways in isolated kidney of Lipopolysaccharide-treated (LPS) rats were investigated in this study. Materials and Methods: Vascular responsiveness to phenylephrine and acetylcholine...

متن کامل

Role of PPARgamma and EGFR signalling in the urothelial terminal differentiation programme.

Recently, considerable interest has focused on the ability of activated peroxisome proliferator-activated receptor gamma (PPARgamma) to promote cytodifferentiation in adipocytes and some carcinoma cells; however, the role of PPARgamma in normal epithelial cytodifferentiation is unknown. Using uroplakin (UP) gene expression as a specific correlate of terminal urothelial cytodifferentiation, we i...

متن کامل

Relaxin signaling activates peroxisome proliferator-activated receptor gamma.

Relaxin is a polypeptide hormone that triggers multiple signaling pathways through its receptor RXFP1 (relaxin family peptide receptor 1). Many of relaxin's functions, including vascular and antifibrotic effects, are similar to those induced by activation of PPARgamma. In this study, we tested the hypothesis that relaxin signaling through RXFP1 would activate PPARgamma activity. In cells overex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • FASEB journal : official publication of the Federation of American Societies for Experimental Biology

دوره 20 8  شماره 

صفحات  -

تاریخ انتشار 2006